首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8139篇
  免费   671篇
  国内免费   614篇
电工技术   140篇
综合类   475篇
化学工业   4577篇
金属工艺   619篇
机械仪表   331篇
建筑科学   78篇
矿业工程   91篇
能源动力   53篇
轻工业   43篇
水利工程   4篇
石油天然气   12篇
武器工业   84篇
无线电   848篇
一般工业技术   1744篇
冶金工业   239篇
原子能技术   20篇
自动化技术   66篇
  2024年   8篇
  2023年   413篇
  2022年   471篇
  2021年   382篇
  2020年   391篇
  2019年   342篇
  2018年   340篇
  2017年   355篇
  2016年   201篇
  2015年   142篇
  2014年   261篇
  2013年   277篇
  2012年   340篇
  2011年   483篇
  2010年   304篇
  2009年   389篇
  2008年   336篇
  2007年   493篇
  2006年   437篇
  2005年   391篇
  2004年   361篇
  2003年   319篇
  2002年   268篇
  2001年   239篇
  2000年   227篇
  1999年   200篇
  1998年   182篇
  1997年   172篇
  1996年   135篇
  1995年   129篇
  1994年   81篇
  1993年   76篇
  1992年   70篇
  1991年   60篇
  1990年   48篇
  1989年   43篇
  1988年   27篇
  1987年   11篇
  1986年   8篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1951年   1篇
排序方式: 共有9424条查询结果,搜索用时 109 毫秒
21.
《Ceramics International》2022,48(11):15462-15469
Due to its unique artistic value, mosaic ceramics are widely used in construction-related fields. To meet the artist's demand for high-quality mosaic ceramic to create artistic works, it is necessary to meet the needs for efficient screening of mosaic ceramic tiles. Different from the ordinary large-target ceramics, mosaic ceramics exhibit characteristics of small tile sizes, a variety of colors, large demand for quantities, and easy reflection on the surface. Common manual detection methods show problems of low efficiency or accuracy, easy to fatigue, and many others. To solve these problems, this paper proposes a new detection method to identify surface defects of mosaic ceramic tiles and designs a detection system platform to achieve rapid detection. The experiment proves that the detection system has a detection rate of 93.99% for small defects on the surface of mosaic ceramic tiles, and the detection time of a single mosaic ceramic tile is less than 0.06 s. The detection method can quickly and accurately screen out high-quality, defect-free mosaic ceramic tiles, which can effectively improve the quality and artistic value of mosaic ceramic art creation.  相似文献   
22.
A digital light processing (DLP) technology has been developed for 3D printing lead-free barium titanate (BTO) piezoelectric ceramics. By comparing the curing and rheological properties of slurries with different photosensitive monomer, a high refractive index monomer acryloyl morpholine (ACMO) was chosen, and a design and preparation method of BTO slurry with high solid content, low viscosity and high curing ability was proposed. By further selecting the printing parameters, the single-layer exposure time was reduced and the forming efficiency has been greatly improved. Sintered specimens were obtained after a nitrogen-air double-step debinding and furnace sintering process, and the BTO ceramics fabricated with 80 wt% slurry shows the highest relative density (95.32 %) and piezoelectric constant (168.1 pC/N). Furthermore, complex-structured BTO ceramics were prepared, impregnated by epoxy resin and finally assembly made into hydrophones, which has significance for the future design and manufacture of piezoelectric ceramic-based composites that used in functional devices.  相似文献   
23.
To provide a basis for the high-temperature oxidation of ultra-high temperature ceramics (UHTCs), the oxidation behavior of Zr3[Al(Si)]4C6 and a novel Zr3[Al(Si)]4C6-ZrB2-SiC composite at 1500 °C were investigated for the first time. From the calculation results, the oxidation kinetics of the two specimens follow the oxidation dynamic parabolic law. Zr3[Al(Si)]4C6 exhibited a thinner oxide scale and lower oxidation rate than those of the composite under the same conditions. The oxide scale of Zr3[Al(Si)]4C6 exhibited a two-layer structure, while that of the composite exhibited a three-layer structure. Owing to the volatilization of B2O3 and the active oxidation of SiC, a porous oxide layer formed in the oxide scale of the composite, resulting in the degradation of its oxidation performance. Furthermore, the cracks and defects in the oxide scale of the composite indicate that the reliability of the oxide scale was poor. The results support the service temperature of the obtained ceramics.  相似文献   
24.
Calcium hexaluminate (CA6) is an intrinsically densification-resistant material, therefore, its porous structures are key materials for applications as high-temperature thermal insulators. This article reports on the combination of calcined alumina and calcium aluminate cement (CAC) in castable aqueous suspensions for the in situ production of porous CA6. The CAC content (10–34 vol%) and the curing conditions ensure structural integrity prior to sintering and maximize the development of hydrated phases. Changes in physical properties, crystalline phases, and microstructure were investigated after isothermal treatments (120–1500 °C), and three sequential porogenic events were observed. The hydration of CAC preserved the water-derived pores (up to 120 °C), and the dehydroxylation of CAC hydrates (250–700 °C) generated inter-particles pores. Moreover, the in situ expansive formation of CA2 and CA6 (900–1500 °C) hindered densification and generated intra-particle pores. Such events differed from those observed with other CaO sources, and resulted in significantly higher pores content and lower thermal conductivity.  相似文献   
25.
《Ceramics International》2022,48(5):6750-6757
Anisotropic porous boron carbide (B4C) structures were successfully produced, for the first time, using the magnetic field-assisted freeze casting method. The effect of the magnetic field on the structure and mechanical strength of the formed porous B4C was compared for two different magnetic field directions that were either aligned with ice growth (vertical), or perpendicular to the ice growth direction (horizontal). It was shown that applying even a weak horizontal magnetic field of 0.1–0.3 T noticeably affected the alignment of mineral bridges between lamellar walls. Both the porosity and the channel widths decreased with increasing horizontal magnetic field strength. In the case of a vertical magnetic field, a larger strength of 0.4 T was required for highly aligned lamellar walls and larger channel widths. Compression strength tests indicated that the application of magnetic fields led to more homogeneously aligned channels, which resulted in increased compression strength in the longitudinal (parallel to the ice growth) direction. Applying a vertical magnetic field of 0.4 T with a cooling rate of 2 °C/min during the freezing step of the magnetic field-assisted freeze-casting method was found to result in the best conditions for producing highly anisotropic structures with large channel widths and fewer mineral bridges, which led to an increase in the mechanical strength.  相似文献   
26.
27.
《Ceramics International》2021,47(24):34810-34819
This study evaluated the effects of different Z-values on the physical, chemical, and biological properties of β-SiAlON ceramics. Increasing the Z-value of the β-Si3N4 solid solution's main phase resulted in the replacement of Si–N bonds with Al–O bonds. The number of columnar crystals decreased, bulk density increased, and porosity decreased, thus transforming the fine-particle microstructure of β-Si3N4 into the columnar structure of β-SiAlON. The compressive strength increased, which facilitated sintering at 1500 °C without sintering auxiliaries. H+ and OH ions in deionized water broke the covalent bonds on the β-SiAlON surface, thereby forming new Si–OH, Al–OH, and N–H bonds on the β-SiAlON surface and producing SiO44−, AlO2, and NH4+ groups in the solution. Increasing the soaking time changed the compositions of ionized H+ and OH ions, thus increasing the pH. MC3T3-E1 cells were cultured on the β-SiAlON surface, and it was observed that the increase in the Z-value of β-SiAlON had no influence on cell adhesion and spreading, but it may slightly suppress cell proliferation at high Z-values. At low Z-values, the low AlO2 concentration helps promote osteogenic differentiation and mineralized nodule formation. Thus, β-SiAlON ceramics possess excellent physical, chemical, and biological properties and are considered excellent bone-repairing materials.  相似文献   
28.
《Ceramics International》2021,47(23):33070-33077
In this work, a number of precursors with 1:1 silicon to carbon atoms ratio and various carbon atom distributions were synthesized and pyrolyzed in order to obtain silicon oxycarbide based materials. The different carbon atom distributions were obtained using both simple monomers with only one silicon atom, as well as large monomers containing either four or sixteen silicon atoms with predefined carbon atom positions. The silicon oxycarbide based materials were investigated using IR, XRD, 29Si MAS NMR and elemental analysis after annealing at various temperatures, as well as TG. The research shows that carbon atom distribution has great impact on the structure of final material and can be used to tailor the material for its projected uses.  相似文献   
29.
《Ceramics International》2021,47(20):28487-28492
In this work, the microwave dielectric properties of Ba4(Nd1-yBiy)28/3Ti18-x(Al1/2Ta1/2)xO54(0≤x≤2, 0.05≤y≤0.2) ceramics co-substituted by A/B-site were studied. Firstly, (Al1/2Ta1/2)4+ was used for substitution at B-site. At 0≤x≤1.5, the above mentioned ceramic was found to exist in single-phase tungsten bronze structure, but at x = 2.0, the secondary phase appeared. Although the dielectric constant decreased by doping the (Al1/2Ta1/2)4+, but the quality factor was observed to improve by 40% and the temperature coefficient of resonant frequency decreased by 75%. Based on the above results, Bi3+ was introduced to Ba4Nd28/3Ti17(Al1/2Ta1/2)O54. The introduction of Bi3+ reduced the sintering temperature, greatly improved the dielectric constant, and ultimately decreased the temperature coefficient of resonant frequency, but it led to deterioration of quality factor. At last, with appropriate site-substitution content control (x = 1.0,y = 0.15), excellent comprehensive properties (εr = 89.0, Q × f = 5844 GHz @ 5.89 GHz,TCF = +8.7 ppm/°C) were obtained for the samples sintered at 1325 °C for 4 h.  相似文献   
30.
Extensive researches on scintillators have been executed to satisfy the excellent radiation detection materials in broad applications. However, practical application of conventional scintillators is limited due to the limitations of high cost, time-consuming fabrication process and insufficient radioluminescence. Herein, high density precursor glass doped with Tb3+ was designed to absorb X-ray efficiently and produce green emission. Molecular dynamics simulation was used to simulate the phase separation process in melting process. Then, Tb3+-doped Ba0.84Gd0.16F2.16 glass ceramics (GCs) with excellent structural and optical properties were elaborated by melt quenching technic and further heat treating. Their structural properties, photoluminescence (PL) and X-ray excited luminescence (XEL) were explored detailedly. The internal quantum efficiency of PL is 64 % in GCs. The XEL intensity is 192 % of that of Bi4Ge3O12 (BGO) commercial scintillator. Our results suggest that Ba0.84Gd0.16F2.16:Tb3+ GCs might have potential application in X-ray detection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号